СО2 для аквариума. Углекислый газ и водородный показатель (рН) воды.
О том, как правильно и сколько подавать углекислый газ (СО2) в аквариум. |
Углекислый газ - СО2 и водородный показатель - рН воды в аквариуме, или как сделать так, чтобы на листьях аквариумных растений не росли сталагмиты.
Углекислый газ, или диоксид углерода (СО2) жизненно необходим растениям. Углерод растения получают именно из СО2, в ходе процесса фотосинтеза, а атомы углерода являются основным строительным материалом для органических молекул. И аквариумные растения тут не исключение. При дефиците углекислого газа им будет просто не из чего строить свои ткани, что сильно замедлит или совсем прекратит их рост. С другой стороны, при избытке диоксида углерода в воде аквариума, рыбы начинают задыхаться даже тогда, когда содержание в ней кислорода велико. Происходит это из-за двух очень неприятных эффектов: Бора и Рута, которые обусловлены изменением свойств рыбьего гемоглобина при высоком содержании углекислого газа. Следовательно аквариумист, если только он хочет любоваться живыми, а не пластмассовыми растениями и рыбками, должен уметь поддерживать концентрацию СО2 в воде своего аквариума в оптимальном диапазоне - таком, чтобы растения могли хорошо расти, а рыбы нормально дышать. О том, как это сделать будет рассказано в данной статье.
Для тех, кто не хочет вникать в суть дела, а хочет сразу получить ответ: оптимальное содержание углекислого газа в воде аквариума составляет 15 - 20 мг/л. А сколько СО2 растворено в воде Вашего аквариума можно рассчитать по величинам показателя pH и карбонатной жесткости воды - КН. Чтобы ничего самому не считать, а только подставить определенные с помощью тестов значения рН и КН в нужные окошки и получить ответ, воспользуйтесь специальной считалкой.
А надо ли вообще аквариумисту что-то измерять и затем что-то рассчитывать? Так ли уж необходимо "проверять алгеброй гармонию"? Ведь всё в природе способно к саморегуляции. Аквариум – это тоже по сути своей маленький "кусочек" природы и естественная гармония может установится в нем сама собой. В аквариуме нормальных (классических) пропорций* с достаточным, но не чрезмерном количеством рыб, биологическое равновесие возникает естественным путем. Чтобы оно оставалось устойчивым, надо не перекармливать рыбу, регулярно и не реже, чем раз в неделю подменивать примерно пятую часть объёма воды. И это действительно обеспечит стабильный биобаланс. В таком аквариуме рыбы в ходе своей жизнедеятельности будут выделять столько углекислого газа, аммиака и других веществ, сколько нужно для того, чтобы растения получали необходимое минеральное питание и не бедствовали. В свою очередь, хорошо себя чувствующие растения обеспечат рыб достаточным количеством кислорода. Начиная с последней четверти IXX века (со времён Н.Ф. Золотницкого) и на протяжении большей части века XX такие аквариумы были почти у всех аквариумистов и всё у них было хорошо. А что такое тесты для измерения важнейших параметров аквариумной воды многие из них вообще не знали... Современная же аквариумистика без использования средств определения параметров аквариумной воды (без тестов) просто немыслима.
Что же изменилось? Технические возможности! С помощью специального оборудования мы стали обманывать природу. В маленькой стеклянной коробочке, которую по сути представляет собой типичный комнатный аквариум (а даже солидный для комнатного водоёма объем в 200-300 л сравнительно с природным водоемом очень мал) появилась возможность содержать такое количество живых организмов, которое никак не соизмеримо с естественными ресурсами в ней имеющимися. Взять хотя бы кислород: как естественным путем восполняются его запасы в воде? Про фотосинтез мы уже упомянули, но это днем, а ночью? Без перемешивания или аэрации воды с помощью технических устройств восполнение запасов кислорода в воде происходит очень медленно. Так в совершенно неподвижной воде аквариума у самой его поверхности - на глубине 0.5-1 мм - количество кислорода может быть вдвое большим, чем на глубине всего только нескольких сантиметров. Переход кислорода из воздуха в воду сам по себе происходит крайне неспешно. По вычислениям некоторых исследователей, молекула кислорода в силу одной лишь диффузии за сутки может углубиться не более чем на 2 см! Поэтому без помп и аэраторов, которых в стародавние времена не было, аквариумисту было просто невозможно заселить аквариум "лишними" рыбами - они бы задохнулись. Современное же оборудование позволяет содержать немыслимое по прежнем временам количество рыб, а яркие лампы очень плотно засадить аквариум и даже покрыть все его дно почвопокровными растениями!
Фото 1. Это фрагмент дна современного аквариума. Оно плотно засажено почвопокровными растениями: глоссостигмой (Glossostigma elatinoides), яванским мхом (Vesicularia dubyana) и риччией (Riccia fluitans). Последняя обычно плавает у поверхности, но можно добиться того (и тут это реализовано), чтобы она росла на дне. Для этого аквариум нужно ярко освещать и подавать в воду углекислый газ - СО2. Креветка Амано тоже не случайно попала в кадр, надо же кому аккуратно и бережно выбирать остатки корма из гущи рогулек. |
Но нельзя забывать, что обманутая природа с того самого мига, как мы сверхплотно заселили аквариум живыми организмами ни за что больше уже не отвечает! Устойчивая жизнеспособность такой системы теперь отнюдь не гарантирована. За тот экологический беспредел, который аквариумист устроил в своём аквариуме, в ответе будет он и только он. Даже незначительная его ошибка приведет к экологической катастрофе. А чтобы не ошибаться надо знать в чем нуждаются растения и рыбы и какие гидрохимические параметры воды им подходят. Своевременно контролируя окисляемость, рН, КН, содержание в воде аммиака, нитритов, нитратов и фосфатов, ионов калия и железа можно оперативно вмешиваться в работу перенаселенной и потому нестабильной системы, снабжая её недостающими ресурсами и удаляя избыточные отходы, которые аквариумный "биоценоз" сам не способен утилизировать. Одним из таких важнейших и необходимых для аквариума с живыми растениями ресурсов является углекислый газ - СО2.
Фото 2. Снимок сделан на семинаре, проведенном Такаси Амано в Москве в 2003 г. Это вид аквариума сзади. Искусственный задний фон здесь не предусмотрен. Его создадут растения, чрезвычайно плотно высаженные вдоль задней стенки. Для того, чтобы они могли расти не "задушив" друг друга использовано сразу несколько хитростей, основанных на аквариумных высоких технологиях. Это специальный многослойный не закисающий грунт, богатый доступными для растений минеральными веществами, очень яркий источник света со специально подобранным спектром, и конечно же устройство, обогащающее воду СО2 : баллон с редуктором, счетчик пузырьков, распылитель углекислого газа (реактор) - все произведено фирмой ADA. |
Фото 3. Часть системы, обогащающей воду аквариума СО2 , крупным планом. Снаружи крепится устройство, позволяющее визуально контролировать подачу газа в аквариум - счетчик пузырьков. Внутри расположен диффузор. Для наглядности, устроители семинара пустили газ очень сильно и от диффузора поднимается целый столб пузырьков. Столько углекислого газа аквариумным растениям не надо. В режиме нормальной работы, газа подается гораздо меньше. Таким образом, буйная растительность в "природном" аквариуме Такаси Амано не растет сама собой – для этого требуется специальное оборудование. Так что не такой уж этот аквариум "природный", он скорее техногенный! |
В атмосфере земли СО2 очень немного – всего 0.038%. В сухом атмосферном воздухе при стандартном барометрическом давлении (760 мм. рт. ст.) его парциальное давление составляет всего 0.23 мм. рт. ст. (0.038% от 760). Но и этого очень незначительного количества вполне достаточно, чтобы углекислый газ важным для аквариумиста образом обозначил своё присутствие. К примеру, дистиллированная или хорошо обессоленная вода, постояв в открытой таре достаточное время для того чтобы в ней растворились и пришли в равновесие с атмосферным воздухом** газы из смеси которых этот воздух состоит, станет слегка кислой. Это произойдет потому, что в ней растворится углекислый газ.
При указанном выше парциальном давлении углекислого газа его концентрация в воде может достичь 0.6 мг в л, что приведет к снижению рН до значений близких к 5.6. Почему? Дело в том, что некоторые молекулы углекислого газа (не более 0.6%, но и этого достаточно для падения рН) взаимодействуют с молекулами воды с образованием угольной кислоты:
СО2+H2O <–> H2CO3
Угольная кислота диссоциирует на ион водорода и гидрокарбонатный ион:
H2CO3 <–> H+ + HCO3-
Вот поэтому и происходит подкисление дистиллированной воды. Напомним, что показатель рН (активная реакция воды) как раз и отражает содержание ионов водорода в воде. Это отрицательный логарифм их концентрации.
В природе точно также подкисляются капли дождя. Поэтому даже в экологически чистых регионах, где в дождевой воде нет серной и азотной кислот, она все равно слегка кислая. Проходя затем через почву, где содержание углекислого газа во много раз выше, чем в атмосфере, вода еще больше им насыщается. Взаимодействуя затем с породами, содержащими известняк, такая вода переводит малорастворимый карбонат кальция в хорошо растворимый гидрокарбонат:
CaCO3 + H2O + СО2 <–> Ca(HCO3)2
Эта реакция обратима. Она может быть смещена в право или влево в зависимости от концентрации углекислого газа. Если содержание СО2 достаточно продолжительное время остается стабильным, то в такой воде устанавливается углекислотно-известковое равновесие: новых гидрокарбонатных ионов не образуется.
Углекислотно-известковое равновесие может складываться при разных значениях рН, причем соотношение концентраций имеющихся в воде ионов CO32- , HCO3- и свободного углекислога газа (СО2) будет зависеть от рН водного раствора (в нашем случае от рН воды в аквариуме) и температуры. Эта зависимость от водородного показателя при температуре 25о С представлена на Рис. 1.
Рис 1. Соотношение CO32- , СО2 и HCO3- при температуре 25о С. Видно, что углекислый газ как таковой (свободная углекислота, или СО2 ) может присутствовать в воде только в том случае, если рН<8,4 , а при значениях рН, меньших величины 4,3 вся растворенная в воде углекислота представлена только свободным углекислым газом. При рН>8,4 свободной углекислоты в воде нет. Гидрокарбонатный ион (полусвязанная углекислота) присутствует в воде со значением показателя рН, большим чем 4,3, при рН=8,4 вся углекислота находится в полусвязанной форме (HCO3-). При рН>8,4 воде появляются ионы CO32- (связанная углекислота), концентрация которых растет вместе с увеличением показателя рН. По материалам сайта кафедры технологии воды и топлива НИУ МЕИ. |
Если в равновесную систему добавлять углекислый газ, то углекислотно-известковое равновесие будет нарушено, что приведет к растворению карбонатов кальция и магния. Применительно к условиям аквариума, это означает, что начнут растворяться раковины у улиток, а также известковые грунт, камни и декорации - в таких случаях аквариумисты говорят - грунт "фонит". Немного забегая вперед, отмечу что "фонящие" грунты и декор непригодны для аквариумов с дополнительной подачей в воду СО2. А почему так, будет объяснено ниже.
Если тем или иным способом убрать СО2 из равновесной системы, то из раствора, содержащего гидрокарбонаты, выпадет в виде осадка карбонат кальция. Так происходит, например, при кипячении воды (это известный способ снижения карбонатной жесткости, то есть концентрации в воде Ca(HCO3)2 и Mg(HCO3)2. Этот же процесс наблюдается и при простом отстаивании артезианской воды, которая под землёй находилась при повышенном давлении и там в ней растворилось много СО2. Подобно газировке в открытой бутылке, оказавшись на поверхности, эта вода отдает лишний углекислый газ до тех пор пока его концентрация не будет соответствовать парциальному давлению СО2 в окружающем воздухе. При этом в ней может появиться беловатая муть, состоящая из частичек известняка - СаСО3. Точно по такому же принципу образуются сталактиты и сталагмиты: сочащаяся из подземных пластов вода освобождается от лишнего углекислого газа и одновременно от карбонатов кальция и магния, которые осаждаются, увеличивая сталактит в размерах. И, по сути, эта же реакция происходит на листьях многих аквариумных растений, когда они активно фотосинтезируя на ярком свету, поглощают весь углекислый газ, растворенный в воде аквариума. Вот тут их листья начинают "седеть", так как они покрываются осадком из карбоната кальция (посмотреть, как это выглядит можно в другой статье). Но раз из воды извлечен весь углекислый газ, то и угольной кислоты в ней больше нет. Если в воде отсутствуют в значимом количестве другие кислоты, то показатель рН должен подняться. Что и происходит. Активно фотосинтезирующие растения, потребив весь имевшийся в воде СО2, могут поднять рН аквариумной воды до 8,4. При таком показателе активной реакции воды в ней уже нет свободных молекул углекислого газа и угольной кислоты, поэтому растения для того, чтобы продолжать фотосинтезировать, вынуждены заниматься добычей диоксида углерода из гидрокарбонатов. Однако, это умеют делать не все виды аквариумных растений, хотя умеют многие.
Ca(HCO3)2 –> СО2 (поглощается растением) + CaCO3 + H2O
Как правило, они не могут заметно поднять рН еще выше, так как дальнейший рост этого показателя сильно ухудшает функциональное состояние самих растений: фотосинтез, а следовательно изъятие СО2 из воды аквариума замедляется, и находящийся в воздухе углекислый газ, растворяясь в воде, стабилизирует рН. Аквариумные растения, таким образом, могут буквально душить друг друга. Выигрывают те виды, что лучше извлекают диоксид углерода из гидрокарбонатов, а страдают не умеющие это делать, к примеру роталы, погостемоны и апоногетоны. Именно эти растения считаются у аквариумистов самыми нежными.
Те растения, что могут извлекать СО2 из гидрокарбонатов более живучи. К таковым относят рдесты, валлиснерию, эхинодорусы, наяс, роголистник. Однако густые заросли элодеи способны и их задушить. И все потому, что элодея может еще эффективнее извлекать связанный в гидрокарбонатах углекислый газ:
Ca(HCO3)2 –> 2СО2(поглощается растением) + Ca(OH)2
Этот процесс может привести к опасному не только для других растений, но и для подавляющего большинства аквариумных рыб росту значения рН аквариумной воды до 10.
В аквариумной воде с высокими значениями рН невозможно выращивание целого ряда растений, да и очень многим видам аквариумных рыб щелочная вода определенно не нравится: в ней они могут заболеть флексибактериозом и бранхиомикозом. Есть даже особое незаразное заболевание рыб, которое вызывается щелочной водой - алкалоз. Особенно губительны резкие суточные колебания значения рН, которые происходят при ярком освещении и вызваны активностью растений, добывающих углекислый газ из гидрокарбонатов.
Можно ли исправить положение, усилив аэрацию аквариума, в расчете на то, что благодаря высокой растворимости углекислого газа вода аквариума обогатится СО2? Действительно, при нормальном атмосферном давлении и температуре 20°С в одном литре воды могло бы растворится 1.7 г углекислоты. Но это произошло бы только в том случае, если бы газовая фаза, с которой соприкасалась эта вода, целиком состояла бы из СО2, то есть парциальное давление углекислого газа составляло бы все 760 мм ртутного столба. А при контакте с атмосферным воздухом, в котором содержится всего 0.038% СО2, в 1 л воды может перейти из этого воздуха только 0.6 мг – это и есть равновесная концентрация, соответствующая парциальному давлению углекислого газа в атмосфере на уровне моря. Если концентрация СО2 в аквариумной воде ниже, то аэрация действительно её поднимет до 0.6 мг/л, но не более! Однако, обычно содержание углекислого газа в воде аквариума все же выше указанной величины и аэрация приведет лишь к потере СО2.
Проблему дефицита углекислого газа можно решить путем подачи его в аквариум, тем более, что это отнюдь не сложно. В этом деле можно обойтись даже без дорогого фирменного оборудования, а просто воспользоваться процессами спиртового брожения в сахарном растворе с дрожжами и некоторыми другими крайне нехитрыми устройствами.
Тут, однако, надо отдавать себе отчет в том, что этим мы обманываем природу ещё раз. Бездумное насыщение воды аквариума углекислым газом ни к чему хорошему не приведет. Так можно быстро уморить рыб, а затем и растения. Процесс подачи углекислоты должен находиться под строгим контролем. Установлено, что для рыб концентрация СО2 в воде аквариума не должна превышать 30 мг/л. А в целом ряде случаев эту величину следует уменьшить хотя бы ещё на треть. Вспомним, что колебания величины рН для рыб и растений вредны, а сильная подача углекислого газа быстро закисляет воду.
Как оценить содержание СО2 и добиться того, чтобы при подаче этого газа в аквариум значения рН колебались незначительно и оставались в приемлемом и для рыб и для растений диапазоне? Тут нам не обойтись без формул и математических расчетов: гидрохимия аквариумной воды, увы, тема довольно "сухая".
Взаимосвязь между концентрациями в воде пресноводного аквариума углекислого газа, ионов водорода и гидрокарбонатных ионов в диапазоне значений рН от 5 до 8,4 отражает уравнение Хендерсона-Хассельбаха, которое применительно к нашему случаю будет иметь вид:
[H+] [HCO3-]/[H2CO3+СО2] = K1 (1)
где К1 – кажущаяся константа диссоциации угольной кислоты по первой ступени, учитывающая равновесие ионов со всем количеством углекислого газа в воде – общей аналитически определяемой углекислотой (то есть, как просто растворенными молекулами СО2, так и гидратированными молекулами в форме угольной кислоты - Н2СО3). Для температуры 25°С эта константа равна 4.45*10-7. Квадратные скобки обозначают молярные концентрации.
Преобразование формулы даёт:
(2)
Величины рН и [HCO3-] можно узнать с помощью стандартных аквариумных тестов на рН и КН. [HCO3-] в аквариумной воде определяет тест на карбонатную жесткость: КН-тест. Следует отметить, что слово "жесткость" в его названии - всего лишь дань традиции. К определению концентраций ионов кальция и магния он прямого отношения не имеет. На самом деле КН-тест определяет щелочность воды (подробнее об этом рассказано в отдельном материале). В обычном аквариуме, если в воду не добавляли буферные растворы типа КН+ и рН+ и гумматы, основной вклад в щелочность вносят именно гидрокарбонатные ионы, поэтому КН-тест вполне подходит для наших целей. Единственное неудобство его использования связано с необходимостью пересчитывать градусы, в которых он выдает результат, в молярные концентрации (М), что, впрочем, вовсе не сложно. Для этого достаточно величину карбонатной жесткости в градусах, полученную после выполнения процедуры тестирования, разделить на 2.804. Концентрацию ионов водорода, выраженную в величине показателя рН, также надо перевести в М, для этого надо 10 возвести в степень, равную величине рН с отрицательным знаком:
Для перевода рассчитанной по формуле (2) величины [H2CO3 + СО2] из М в мг/л СО2 надо умножить её на 44000.
Нельзя забывать, что с помощью уравнения Хендерсона-Хассельбаха можно рассчитать концентрацию общей аналитически определяемой углекислоты в аквариуме в том случае, если для стабилизации рН аквариумист не использовал специальных реактивов и содержание гуминовых и прочих органических кислот в его аквариуме умеренное (с достаточной для любителя степенью точности об этом можно судить по цвету аквариумной воды: если она не похожа на "чёрные воды" Амазонии, то есть бесцветна или окрашена только чуть-чуть - значит их там немного).
Те, кто на короткой ноге с компьютером, в частности с электронными таблицами Exel, могут на основе приведенной выше формулы и величины К1 составить подробные таблицы, отражающие содержание углекислоты в зависимости от карбонатной жесткости и рН. Мы же приведем тут сокращенный, но, надеемся, полезный для аквариумистов-любителей вариант такой таблицы и калькулятор, позволяющий автоматически рассчитать содержание углекислого газа в воде:
Минимальные значения рН воды в аквариуме для заданной карбонатной жесткости, при которых содержание углекислого газа еще не опасно для рыб (красные цифры в столбцах), и максимально допустимые величины рН при которых растения, не умеющие добывать СО2 из гидрокарбонатов, хотя и медленно, но еще растут (зелёные цифры в столбцах). Для 25°С.
Карб. жестк. KH | 0,5 | 1 | 2 | 3 | 4 | 5 | 6-7 | 8-9 | 10-11 | 12-13 |
Моль/л | 0,18 | 0,36 | 0,71 | 1,07 | 1,43 | 1,78 | 2,14-2,5 | 2,85-3,21 | 3,57-3,92 | 4,28-5,35 |
min рН для рыб (25-28 мг/л СО2) |
5,8 | 6,1 | 6,4 | 6,6 | 6,7 | 6,8 | 6,9 | 7,0 | 7,1 | 7,2 |
max рН для растений (6-7 мг/л СО2) |
6,4 | 6,7 | 7,0 | 7,2 | 7,3 | 7,4 | 7,5 | 7,6 | 7,7 | 7,8 |
"Естественный" рН (2-3 мг/л СО2) |
6,8 | 7,1 | 7,4 | 7,6 | 7,7 | 7,8 | 7,9 | 8,0 | 8,1 | 8,2 |
рН, соответствующий парциальному давлению углекислого газа в атмосфере (0,6 мг/л СО2) |
7,4 | 7,7 | 8,0 | 8,2 | 8,3 | 8,4 | _ | _ | _ | _ |
Если Вы решили подавать углекислый газ, то воспользуйтесь этой таблицей для определения оптимального значения рН. Выберите столбец, соответствующий карбонатной жесткости воды в Вашем аквариуме. Отрегулируйте поступление СО2 так, чтобы величина рН попадала в интервал между красными и зелеными цифрами. К примеру, если КН в аквариуме равен 4, то интервал дупустимых значений рН составит 6,7-7,3. При рН=6,7 концентрация углекислого газа в воде будет около 28 мг/л - это почти предельная величина для рыбок и очень комфортная для растений. Если концентрацию СО2 еще немного увеличить (значение рН при этом станет меньше, чем "красная" цифра), то рыбки могут погибнуть. При рН=7,3 рыбкам, даже самым нежным, не грозит отравиться углекислым газом, так как его содержание будет для них абсолютно безопасным: всего лишь около 7 мг/л. Этой концентрации достаточно и для выживания растений, однако бурного роста они демонстрировать не будут. А вот при значениях показателя рН из середины интервала допустимых значений, например при 6,9 (концентрация СО2 будет при этом примерно 17 мг/л), отлично будут себя чувствовать и рыбы, и растения. Поддерживать такие значения как раз и нужно стремиться. Для этого уменьшают подачу СО2, если величина рН стремится к нижней границе и увеличивают, если она приближается к верхней. В ходе светового дня активная реакция воды обычно постепенно изменяется, так как количество подаваемого углекислого газа редко точно соответствует потребностям растений: концентрация газа или медленно растет, или падает. Исходная настройка на середину интервала будет способствавать тому, чтобы величина рН не выскочила за его границы. Если подача СО2 регулируется рН-контроллером, автоматически перекрывающим подачу углекислого газа при снижении рН до заранее заданного уровня, то этот уровень должен быть выставлен так, чтобы он не был ниже допустимого для рыб (красные цифры в таблице). Использование рН-контроллера наиболее эффективно и безопасно, но сам он стоит относительно дорого, а входящий в комплект рН-электрод нуждается в ежемесячной калибровке.
Фото 5. На переднем плане этой фотографии еще одна ротала (Rotala wallichii). Слева - маяка речная (Mayaca fluviatilis). Она тоже любительница свободного углекислого газа в воде. При подходящем освещении и содержании углекислоты в аквариуме порядка 15-20 мг/л эти водные растения покрывается пузырьками кислорода, настолько эффективно идет фотосинтез. Вода оказывается пересыщенной кислородом. Следует особо отметить, что это обилие кислорода не защитит рыб от гибели в случае передозировки СО2. |
Организовать подачу СО2 в аквариум можно не только с помощью баллона, наполненного СО2, но также и с помощью специальных таблеток, помещаемых в аквариум в особом устройстве (Производство SERA), с помощью брагогенератора, с помощью электронного устройства, вырабатывающего углекислый газ из угольного картриджа и еще одного нехитрого устройства. В простейшем варианте с целью насыщения воды углекислым газом можно в начале светового дня подливать в аквариум слабоминерализованную газированную воду (естественно без пищевых добавок!). В небольших аквариумах это может дать видимый положительный эффект.
Фото 6. Если все делать правильно, то может получиться очень неплохо, не правда ли? Без подачи углекислого газа в аквариум такое оформление было бы просто невозможным. Густозасаженный быстро растущими водными растениями "травник" требует обязательной ежедневной подачи СО2. Автор оформления Евгений Боровик. Подробнее о стиле Боровика. |
В таблице также указаны величины рН, которые при заданной карбонатной жесткости приобретает хорошо аэрируемая вода в комнатном аквариуме ("естественный" уровень рН), в том случае если он умеренно заселен рыбами и если окисляемость воды в нём не высока. Иными словами, если подачу углекислого газа в аквариум вдруг прекратить, а аэрацию включить "на полную", то можно ожидать, что рН воды в течение нескольких часов возрастет примерно до этих величин. Как видно из таблицы, перепад от нижней границы допустимого интервала до "естественного" уровня рН примерно равен 1. Для нежных видов креветок, рыбок и растений он может оказаться слишком сильным и, если не вызовет их гибель, то угнетающее действие окажет. Автоматический контроллер рН таких перепадов не допускает, но если контроллера нет, то они вполне вероятны. Поэтому, если на ночь Вы прекращаете подавать СО2 в аквариум и включаете аэрацию, то будьте осторожны: рН может слишко резко вырасти. Чтобы этого не допустить, не настраивайте подачу углекислого газа так, чтобы величина показателя рН была вблизи нижней ("красной") границы допустимого интервала, ведь вполне достаточно держаться его середины и тогда перепад дневных и ночных значений рН не превысит 0,5, что совершенно безопасно. Сильная аэрация ночью также далеко не всегда бывает нужна. Но только наблюдения за аквариумом позволят установить необходима ли она (во многих случаях потока воды от помпы фильтра вполне хватает для обеспечения достаточного газообмена).
Цифры в последней строке этой таблицы – это рН воды заданной карбонатной жесткости, находящейся в равновесии с парциальным давлением СО2 в атмосфере. Видно, что они еще выше. В природных водоемах, в порогах чистых рек, где вода бурлит и отдает в атмосферу весь лишний (неравновесный) углекислый газ, такие значения рН действительно имеют место. В помещениях же и парциальное давление углекислоты в воздухе выше, чем на открытом воздухе, и процессы, идущие в грунте и фильтре аквариума, приводят к образованию углекислого газа. Это обеспечивает большее, чем в естественных условиях, содержание СО2 в воде аквариумов и вода в них при той же карбонатной жесткости оказывается более кислой.
Теперь разберем еще один важный вопрос: при каких исходных значениях рН воды в аквариуме в него можно подавать углекислый газ? Для этого вновь обратимся к рисунку 1 и нашей полезной табличке. Вспомним, что угольная кислота, которая образуется при растворении атмосферного углекислого газа в воде, снижает рН дистиллированной воды, КН которой близко к 0, до 5.6, а вода с карбонатной жесткостью, к примеру, равной 5 kH, находясь в равновесии с атмосферными газами, имеет активную реакцию 8.4. Легко прослеживается такая закономерность: чем выше карбонатная жесткость воды, тем она более щелочная. Как видно из рисунка, при величинах рН, больших 8,4 в воде присутствуют карбонатные ионы(CO32- ), которые реагируя со свободным углекислым газом, будут переводить его полусвязанную форму (HCO3-), недоступную для нежных видов аквариумных растений. Мы будем расходовать углекислый газ зря. По этой же причине не подойдут для аквариума-травника и "фонящие" грунты. Подавая в аквариум с таким грунтом углекислый газ, мы опять же будем его расходовать на образование гидрокарбонатных ионов - HCO3-. Кроме того, высокие значения рН в принципе угнетают жизнедеятельность многих видов аквариумных растений, но зато отлично способствуют росту водорослей. Если у Вас дома из-под крана идет вода с высоким значением рН и, следовательно, с высокой карбонатной жесткостью, то для аквариума-травника с дополнительной подачей углекислого газа она не подходит. Придется использовать установку обратного осмоса для снижения ее минерализации и о том, как это сделать рассказано отдельно.
Итак, вода с высоким значением рН не подходит. А с низким? Тоже не подходит, так как при этом и карбонатная жесткость также слишком низкая. Объясним почему и это плохо. Из рисунка видно, что при рН=6,4 концентрации свободного углекислого газа и гидрокарбонатного иона примерно равны и они при низкой "карбонатке" совсем невелики - это хорошо видно из таблички: КН=0,5 , рН=6,4 , а содержание СО2 при этом всего 6 мг/л - этого достаточно лишь для выживая нежных растений. Насыщение воды углекислотой до комфортной для них концентрации 28 мг/л приведет к падению рН до 5,8. Для многих рыб такое значение показателя рН - опасный предел - ниже падать уже нельзя, иначе из-за эффекта Вериго-Бора рыбы начнут испытывать недостаток кислорода и погибать. Однако вся штука в том, что при низкой карбонатной жесткости упасть ниже этого предела до чрезвычайности просто: легкая передозировка СО2 и все!
Таким образом, теория подсказывает нам, что диапазон значений карбонатной жесткости, наиболее подходящий для аквариума-травника с дополнительной подачей углекислого газа лежит в пределах 2-4о КН. Это же подтверждено и практическим опытом аквариумистов. Теория и практика в этом вопросе единодушны. Действительно, при оптимальных для рыб и растений концентрациях СО2, (это 15 - 20 мг/л), значения показателя рН будут в пределах 6,6 - 6,7 , если больше заботиться о растениях нежели о рыбках, то можно опустить рН и до 6,4. Такая величина рН еще не вызовет отравления (ацидоза) у рыб, подходящих для травника с СО2, некомфортна для водорослей и хороша для многих аквариумных растений.
Видео 1. Пример из жизни аквариумной. Аквариум на 300 л с красными неонами, отоцинклюсами, креветками вишнями и "Аманками", там еще и апистограммы Виджета есть (в кадр не попали). Карбонатная жесткость воды в этом аквариуме ниже, чем оптимальная для подачи углекислого газа, и это ограничивает максимально допустимую концентрацию СО2 величиной 14 мг/л. При карбонатной жесткости KH=1 я не рискую более увеличивать содержание СО2, так как это привело бы к падению показателя рН ниже значения 6,4. Красные неоны легко бы это понижение пережили, а вот в отношении других обитаталелей аквариума у меня такой уверенности нет. Но надо признать, что и 14 мг/л очень хорошо способствует росту растений, хотя "пузыряет" только нимфея, на ротале "Вьетнам" пузырей почти нет. Для того, чтобы они появились, надо еще чуть-чуть подбавить газку..., но нельзя. Будь КН=2, при рН=6,4 содержание углекислого газа составило бы уже 28 мг/л. При такой концентрации роталы пузыряли бы вовсю. СО2 в этом аквариуме растворяется при помощи флиппера от Деннерле (Dennerle Flipper) - "лесенки" , которая работает очень эффективно. |
Какое оборудование нужно для подачи углекислого газа в аквариум? Тут лучше всего обратиться к практическому опыту наших форумчан. Читайте: СО2 для аквариума.
*Классические пропорции аквариума таковы: ширина равна или не более чем на четверть меньше высоты. Высота не превышает 50 см. Длинна же, в принципе, не ограничена. В качестве примера можно привести аквариум длинной 1 м, шириной 40 см и высотой 50 см. Биологическое равновесие в таком комнатном водоёме установится относительно легко. О конкретных моделях аквариумов с правильными пропорциями можно прочитать здесь.
Назад к тексту
**Под равновесием с атмосферным воздухом мы понимаем такое состояние воды, когда концентрации (напряжения) растворенных в ней газов соответствуют парциальным давлениям этих газов в атмосфере. Если давление какого-либо газа уменьшится, то молекулы этого газа начнут покидать воду, до тех пор пока снова не будет достигнута равновесная концентрация. И наоборот, если парциальное давление газа над водой увеличится, то большее количество этого газа растворится в воде.
Назад к тексту
- 57981 просмотр